#### Intubation

Airway management and ventilation are the first and most critical steps in the initial assessment of every patient you will encounter.

#### **Topics**

- Anatomy of the respiratory system
- Physiology of the respiratory system
- Respiratory problems
- Respiratory system assessment
- Airway management

### Anatomy of the Respiratory System

## Anatomy of the Upper Airway



#### Upper Airway

- Nasal cavity
- Oral cavity
- Pharynx

#### Pharynx

- Nasopharynx
- Oropharynx
- Laryngopharynx

#### Nasal Cavity

- Maxillary bone
- Frontal bone
- Nasal bone
- Ethmoid bone
- Sphenoid bone
- Septum

- Sinuses
- Eustachian tubes
- Nasolacrimal ducts
- Nares
- Mucous membranes

#### Larynx

- Thyroid cartilage
- Cricoid cartilage
- Glottic opening
- Vocal cords
- Arytenoid cartilage
- Pyriform fossae
- Cricothyroid cartilage

#### Oral Cavity

- Cheeks
- Hard palate
- Soft palate
- Tongue
- Gums
- Teeth

#### Internal Anatomy of the Upper Airway



#### Lower Airway Anatomy

- Trachea
- Bronchi
- Alveoli
- Lung parenchyma
- Pleura

#### Anatomy of the Lower Airway



# Anatomy of the Pediatric Airway



### Anatomy of the Alveoli



#### Physiology of the Respiratory System

#### Introduction

- Respiration is the exchange of gases between a living organism and its environment.
- Ventilation is the mechanical process that moves air into and out of the lungs.

#### **Pulmonary Circulation**





# Diffusion of Gases Across an Alveolar Membrane

#### Normal Respiratory Rates

| Age      | Rate Per<br>Minute |
|----------|--------------------|
| Adult    | 12-20              |
| Children | 18-24              |
| Infants  | 40-60              |

#### Respiratory Factors

| Factor      | Effect    |
|-------------|-----------|
| Fever       | Increases |
| Emotion     | Increases |
| Pain        | Increases |
| Hypoxia     | Increases |
| Acidosis    | Increases |
| Stimulants  | Increase  |
| Depressants | Decrease  |
| Sleep       | Decreases |

#### Dead Space Volume (VD)

- Amount of gases in tidal volume that remains in the airway.
- Approximately 150 ml in adult male.

#### Tidal Volume (VT)

- Average volume of gas inhaled or exhaled in one respiratory cycle.
- Average adult male

$$V_T = 500 \text{ ml } (5-7 \text{ cc/kg})$$

#### Functional Residual Capacity (FRC)

The volume of gas that remains in the lungs at the end of normal expiration.

$$FRC = ERV + RV$$

### Expiratory Reserve Volume (ERV)

The amount of air that can be maximally exhaled after a normal expiration.

### Residual Volume (RV)

The amount of air remaining in the lungs at the end of maximal expiration.

#### Airway Obstruction

The tongue is the most common cause of airway obstruction.

#### Other Causes of Airway Obstruction

- Foreign bodies
- Trauma
- Laryngeal spasm and edema
- Aspiration

### Sellick's maneuver (cricoid pressure)



### Airway before applying Sellick's



### Airway with Sellick's applied (note compression on the esophagus).



## Endotracheal intubation is clearly the preferred method of advanced airway management in prehospital emergency care.

Placement of Macintosh blade into vallecula



Placement of Miller blade under epiglottis



#### **Endotracheal Intubation Indicators**

- Respiratory or cardiac arrest.
- Unconsciousness.
- Risk of aspiration.
- Obstruction due to foreign bodies, trauma, burns, or anaphylaxis.
- Respiratory extremis due to disease.
- Pneumothorax, hemothorax, hemopneumothorax with respiratory difficulty.

#### Advantages of Endotracheal Intubation

- Isolates trachea and permits complete control of airway.
- Impedes gastric distention.
- Eliminates need to maintain a mask seal.
- Offers direct route for suctioning.
- Permits administration of some medications.

## Disadvantages of Endotracheal Intubation

- Requires considerable training and experience.
- Requires specialized equipment.
- Requires direct visualization of vocal cords.
- Bypasses upper airway's functions of warning, filtering, and humidifying the inhaled air.

## Complications of Endotracheal Intubation

- Equipment malfunction
- Teeth breakage and soft tissue lacerations
- Hypoxia
- Esophageal intubation
- Endobronchial intubation
- Tension pneumothorax

## Hyperventilate patient.



### Prepare equipment.



### Visualize larynx and insert the ETT.



# Inflate cuff, ventilate, and auscultate.



### Esophageal detector device



## An esophageal intubation detectorbulb style.

A. Attach device to endotracheal tube and squeeze the detector.



# If the bulb does not refill, the tube is improperly placed.



## If bulb refills easily upon release, it indicates correct placement.



# Confirm placement with an ETCO2 detector.



#### Secure tube.



Continuously recheck and reconfirm the placement of the endotracheal tube.

#### The Pediatric Airway

- Smaller and more flexible than an adult.
- Tongue proportionately larger.
- Epiglottis floppy and round.
- Glottic opening higher and more anterior.
- Vocal cords slant upward, and are closer to the base of the tongue.
- Narrowest part is the cricoid cartilage.